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1. Introduction

Recent years have seen an explosion of empirical research leading to an unprecendented advance in our
knowledge of the interaction of society and the environment. As the amount of research continues to grow,
it becomes more important that studies be used to collectively answer societally important questions. The
approach of this report towards environmental assessment is an e�ort to holistically integrate this research.
Our vision was to create a system to not only incorporate recent discoveries, but also to be updated with new
research and new �ndings as they become available. We present below a �exible, open-source, and adaptive
system to combine our best estimates of environmental impacts, allowing us to constantly learn the broad
societal e�ects from an evolving body of research. The current approach is not limited to climate, however, as
it can be extended to project many di�erent types of impacts (e.g., from policy changes). The tools we have
designed can become a central hub enabling researchers to collaborate on a larger body of socially important
research.

We identify and employ a meta-analytical approach (described in section 2) that draws on Bayesian
methods commonly used in medical research and previously implemented in Hsiang et al. (2013b). Using
these techniques, we design an open-source tool which can update aggregated dose-response functions in
real time as new research becomes available (�g. B2). With the method of meta-analysis in place, we then
identify a group of rigorous studies across a number of climate-impacted sectors. Combining the dose-response
functions from individual studies (detailed in section 3), we generate a series of aggregate response functions
for each sector. Finally, to understand the impact of climate upon each sector, we take the product of our
response functions and the downscaled physical clmate projections described in Technical Appendix A, giving
us partial equilibrium impacts out to the end of the current century (described in section 4). These impacts
are then used as input to computationally model the general equilibrium e�ects of changes in climate.

2. Meta-Analysis Approach

The empirical impact functions are treated as conditional distributions, conditioned on weather variables
such as mean temperature and precipitation. This representation facilitates meta-analysis, and also captures
the range of uncertainty in the empirical estimates. Each distribution is evaluated at a given quantile only
when it is applied to data, as described in section 4.

2.1. Hierarchical Bayesian Modeling

The impact estimates that combine results from more than one study apply a Bayesian hierarchical model
structure, as described by Gelman et al. (2013). This approach simultaneously estimates a distribution of
possible underlying e�ect sizes, as well as a degree of �partial-pooling�. If the individual study estimates
are consistent with a single underlying e�ect, their estimates are pooled to accurately estimate the e�ect.
However, if the study estimates are inconsistent with each other, the underlying e�ect is estimated to be only
loosely informed by each study, which is considered to have its own idiosyncratic e�ect.

Consider a collection of impact functions, fi(βi|T ), for i ∈ {1, . . . , N} indexing independently published
results. Here, fi(βi|T ) is a probability distribution for βi conditioned on a weather variable T . We wish to
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Figure B1: Pooled (left) and Bayesian hierarchical (right) estimates for a constructed polynomial and sinusoidal response

function. The pooled distribution is calculated as p(β̂|x) = p(∩N
i=1β̂ = βi|x) ∝

∏N
i=1 p(βi|x), where p(βi|x) is the conditional

distribution for either the polynomial or sinusoidal response function at a given value of x. The 95% con�dence interval of the
pooled result does not overlap with the individual estimates when they are far from each other. The con�dence intervals on β̂
are wider, re�ecting the uncertainty in resolving the two estimates.

combine these estimates into a single conditional distribution, g(β̂|T ), where β̂ is called the �hyper-parameter�.

We treat each value of T independently, so we will write these functions as fi(βi) and g(β̂).
Under hierarchical merging, the conditional parameter distributions are required to be Gaussian distri-

butions, and below, Gaussian parameter estimates errors are used in all applicable response functions. The
governing equations are,

θi ∼ N (β̂, τ2)

βi ∼ N (θi, σ
2
i )

where βi is a measured parameter, corresponding to a true (unobserved) parameter θi which characterizes the

response for study i. σ2
i is the standard error of βi. We are interested in β̂, the underlying hyper-parameter,

and τ2, the variance between models. We apply non-informative priors to β̂ and τ . That is, p(β̂) ∝ 1 and
p(τ) ∝ 1. The values of βi and σ

2
1 are provided by the published studies, and the rest of the parameters are

simultaneously estimated.
An analytic solution exists for how to generate draws from the posterior distribution of this hierarchical

model, and is described in chapter 5 of Gelman et al. (2013). We approximate the posterior by producing
draws and constructing a histogram for each conditional distribution.

Figure B1 shows an example of how pooled and Bayesian hierarchical results di�er for a combination of
two simple impact functions.

2.2. Distributed Meta-Analysis System

To support the management of empirical results, the meta-analysis combination process, and the applica-
tion of these results to data, we constructed a new tool called DMAS, the Distributed Meta-Analysis System1.
This system currently operates on a dedicated server housed at the University of California, Berkeley. The
heart of DMAS is a database of results that can be easily recombined into many di�erent meta-analyses. This
database is designed to be expanded in a decentralized manner, by �crowd-sourcing� from scientists working
independently to detail their empirical �ndings2. By combining the e�orts of many researchers throughout
various academic disciplines in an Internet research community, the capacity of scientists to maintain up-to-
date empirical relationships increases drastically. Below, we detail the numerous features which are available
to promote academic exchange on DMAS. Unlike many crowd-sourcing projects, the necessary vetting of this
information is made much easier by connecting each estimate with published literature. This connection to
academic journals further supports the construction of comprehensive meta-analyses.

1Available online at http://dmas.berkeley.edu/
2A similar process of decentralized collection of results has begun for drug discovery (Lessl et al., 2011).

B-2

http://dmas.berkeley.edu/


2.2.1. Model Types

The DMAS library results are conditional distributions, representing one or more parameter estimates
typically in a dose-response curve. The following representations are used for impact functions in this report:

Discrete-Discrete Probability Models: The discrete-discrete probability model represents either a sam-
pled approximation to a continuous probability density function, f(y|x), at discrete values of y ∈ {yi} and
x ∈ {xi}, or a probability mass function of the same form. This is most appropriate when the collection of
response outcomes is limited or categorical. Both the dependent and independent variables may be either
categorical or sampled at a collection of numerical levels. For continuous functions, the sampling of the
dependent variable, {yi}, and the independent variable, {xi}, can be uneven.3 This model can be treated as
a matrix P = (pij = f(yj |xi)). Discrete-discrete probability models are the ultimate form for any Bayesian
hierarchical meta-analysis result, after draws from the posterior distribution are organized into histograms.

Spline Models: The spline model represents a continuous conditional probability function, using a spline
to denote the log of its values.

f(y|x) =


ea0+b0y+c0y

2

for y0 ≤ y < y1

ea1+b1y+c1y
2

for y1 ≤ y < y2

· · · · · ·

Distinct splines are described at distinct values of the conditioning variable x ∈ {xi}, which may be
categorical or numerical and may be sampled unevenly. The lowest value of y0 for each x may be −∞, and
the highest value of y1 may be ∞. Spline models are used for most impact functions, since they provide
arbitrary resultion on the shape of the conditional distribution curve.

Bin Models: A bin model represents a model de�ned across continuous spans, where the distribution
is constant over each span. It is a combination of information describing the width of each bin and an
underlying categorical model of one of the other model types describing each bin's probability distribution.
Bin models are used for degree-day impacts as in Schlenker and Roberts (2009), with an underlying spline
curve representation for each bin.

2.2.2. Importing Models

Each model type has a �le format speci�cation, and parameter estimates can be added by uploading �les in
these formats. We also provide a variety of simpli�ed ways to specify models. This includes a spreadsheet-style
entry for discrete-discrete probability models, a GUI model generator for uniform, Gaussian, and polynomial
models, and a �feature interpreter� which allows spline models to be described in terms of any collection of
their mean, variance, standard deviation, skew, mode, or arbitrary con�dence intervals.

2.2.3. Additional Features

Finally, DMAS includes a wide range of features that can help support the continued evolution and use of
these results. The models can be visualized, compared, and combined with weights. They can be selectively
included or excluded from a meta-analysis combination, either manually or using arbitrary population or
study characteristics. Arbitrary functions of results can be computed, applied to data, and output to for
external use. Finally, the entire database can be quickly searched using tags, parameter de�nitions, and
study-speci�c meta-data.

Some of the greatest advantages of DMAS are its collaborative aspects. Scientists can curate collections
of results for meta-analyses, with a moderation system for others to submit additions. They can also create
crowd-sourcing templates, which ask for study results in a customized form, to quickly collect information
from many researchers. In addition, each result and each collection can act as a discussion board, inviting
authorized users to debate the choices used.

We hope that this tool can act as a platform to promote the meta-analysis process and make results
available to both modelers and a wider audience.

3For calculating a CDF, we assume that each yi represents a histogram-style bin, while under interpolation we use linear
interpolation (see section 8).
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Figure B2: A: Front page of the DMAS system, showing a gallery of existing results. B: Search screen, allowing results to be
�ltered by population and study characteristics. C: A sample result, the 8-schools example from Gelman et al. (2013), showing
options for selecting and weighting results and identifying the meta-analysis combination technique.
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3. Micro-founding impact functions

We develop empirical, micro-founded impact functions for a number of sectors seen to be economically
important. These include agriculture, crime, health, and labor. Within each sector, we draw on statistical
studies that robustly account for a number of potential confounding factors when trying to identify the
impacts of climate. For the current analysis, we make no claim to having performed a exhaustive quantitative
meta-analysis from the reviewed papers. Numerous high-quality and insightful studies are omitted from
sectors, though many studies were used to con�rm the validity of the selected papers. However, we have
designed our approach to be inclusive in the long-run by building an open-source system for meta-analysis
and collaboration. Incorporating each study took considerable e�ort, often requiring new data, e�orts on the
part of the original authors and ourselves to rerun analyses, and extensive discussions to ensure an accurate
interpretation of results. In this process, we are indebted to each of the authors listed below. Our �nal
selection required studies to meet the following criteria:

1. Nationally representative. We required that studies be conducted at national level or be drawn
from a representative random sample of the entire US. This was of particular relevance to health sector
studies. For example, many that we considered performed detailed time-series analysis of single or
multiple cities (e.g., Curriero et al., 2002; Anderson and Bell , 2009). While these were high-quality
studies, inclusion would have required either a weighting scheme based on city populations or an
assumption of national generalizability.

2. Analyze recent time-periods in US history. As we are concerned with potential e�ects of adap-
tation, we preferred studies that identi�ed e�ects as close to the present as possible.

3. Robust to unobserved factors that di�er across spatial units (jurisdictions, counties, or states).
We placed an emphasis on studies that were able to control for unobservable di�erences between spatial
units of analysis with the inclusion of �xed e�ects. This required the use of longitudinal or panel data,
as cross-sectional comparisons between could su�er from omitted variable bias.

4. Identify responses to high-frequency climatic variables (days or weeks). The importance of
using high-frequency data to estimate climate impacts is demonstrated by all papers included, building
on early work by Deschenes and Greenstone (2007), and in one case �nding large e�ects by considering
sub-daily temperature responses (Schlenker and Roberts, 2009).

5. Identify responses to the full distribution of temperature and rainfall measures. Many
studies looked at single climatic events, or parts of the temperature or rainfall distribution (e.g., heat-
waves in Anderson and Bell , 2011). As we are modeling annual impacts, we chose only those studies
that included the full distribution of realised climate outcomes, and ensured the validity of results by
comparison to numerous studies looking at single phenomena or sub-populations.

6. Account for seasonal patterns and trends in the outcomes. Cyclicality and seasonality of
responses to climate forcings is a source of major concern, so we selected only those studies that
robustly accounted for seasonal patterns and time trends in their analysis.

7. Ecologically valid. We required studies to be valid for real-life circumstances and levels of exposure,
which led us to prefer studies that were quasi-experimental in design, using observational data. For
example, in the case of labor, numerous laboratory studies exist on the intensive margin e�ects of
temperature upon productivity (e.g., Seppanen et al., 2006). As these raised a question of ecological
validity when applied to the labor sector, we chose to not include them.

Many of the impacts of climate change will unfold over years, but distinguishing between the role of
climate change and the role of social, technological, and economic evolution is very di�cult over any long
time horizon. Our criteria for selecting studies requires that long-term trends are accounted for and are not
re�ected in the measured impact response functions. As a result, the impacts that we measure are from
weather �shocks�, short-term changes in temperature and precipitation which are not captured by long-term
trends. This approach has both strengths and weaknesses. Its key strength is that it clearly identi�es the
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impacts of weather as distinct from longer-term changes. However, it may miss many of the long-term impacts
of climate change that do not take the form of increases in the size, frequency, and duration of weather shocks.

We identify a number of studies using panel data to isolate the variation within the relevant spatial
unit, while controlling for unobservable di�erence between units. Estimates from each of the studies were
combined, as detailed in section 2. We have been conservative in our choice of studies for the current analysis,
using only studies which we think most credibly identify the impact of climate upon speci�c outcomes in
each sector. However, our approach allows for future studies to be incorporated, introducing new �ndings,
and modifying the current results. The following is a complete list of empirical response functions used in
this study, with detailed discussion of each of the studies beneath (shown in �g. B4):

Agriculture Maize yields vs. temperature (East)
Maize yields vs. temperature (West)
Maize yields vs. precipitation (East)
Maize yields vs. precipitation (West)
Wheat yield vs. temperature
Soybean yields vs. temperature (East)
Soybean yields vs. temperature (West)
Soybean yields vs. precipitation (East)
Soybean yields vs. precipitation (West)
Cotton yields vs. temperature
Cotton yields vs. precipitation
Maize yields vs. 100ppm CO2 increase
Wheat yields vs. 100ppm CO2 increase
Soybean yields vs. 100ppm CO2 increase
Cotton yields vs. 100ppm CO2 increase

Crime Violent crime vs. temperature
Violent crime vs. precipitation
Property crime vs. temperature
Property crime vs. precipitation

Health Mortality vs. temperature (all age)
Mortality vs. temperature (younger than 1 year)
Mortality vs. temperature (1 - 44 years)
Mortality vs. temperature (45 - 64 years)
Mortality vs. temperature (65 years and up)

Labor Hours worked in high-risk industries vs. temperature
Hours worked in low-risk industries vs. temperature
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3.1. Agriculture

Schlenker and Roberts (2009)

Outcome data: Yields for maize, soybeans, and cotton from US Department of Agriculture National
Agricultural Statistical Service.

Climate data: PRISM temperature and rainfall, temporally downscaled to daily resolution.
Sample period: 1950-2009
Sample unit: County-years, for counties with recorded yields of maize, soybeans, or cotton
Methodology: Piecewise linear response of log(yield) to cumulative temperature (degree days) and

polynomial response to precipitation (seasonal total), controlling for county �xed ef-
fects and state-speci�c quadratic trends. Piecewise linear models are speci�c to each
crop type, with thresholds that capture the bene�cial e�ects of temperatures below a
certain point, and the deleterious e�ects above.

Result: Modi�ed version of Schlenker and Roberts, 2009, SI Appendix, p. 9, �g. A3; and p.
20, �g. 10

Impact function: We contacted the authors of the study to select a preferred response function from the
multiple methods they had employed, selecting a piecewise-linear speci�cation using
degree days for temperature and seasonal total precipitation. We obtained impact
functions for each of the three crops studied, for both temperature and precipitation.
The authors note the distinct di�erence in response between counties to the east and
west of the 100th meridian for maize and soybeans, so we obtained separate response
functions in for these regions. On December 19th, 2013, we were sent a complete list of
response functions that were updated span the time period up to and including 2011
(as presented in Berry et al., 2012).

Hsiang, Lobell, Roberts, and Schlenker (2013a)

Outcome data: USDA-NASS
Climate data: University of Delaware monthly temperature and precipitation
Sample period: 1950-2007
Sample unit: County-year
Methodology: Non-linear response of log(yield) to crop-speci�c seasonal average temperature and

precipitation, controlling for county and year �xed e�ects.
Result: Hsiang et al., 2013a, p. 19.
Impact function: We use the response of wheat to seasonal average temperature presented in the paper.

Results were obtained from the author. Calorie weighted averages were taken between
maize and wheat in order to combine results, as detailed in section 4.

McGrath and Lobell (2013)

Outcome data: Yield from 1960-2004 from FAOStat.
Climate data: Keeling CO2 concentrations and country average P/PET.
Methodology: Process model that develops the response of di�erent crops to carbon dioxide con-

centrations and growing season P/PET from empirical studies. This is then used to
estimate the changes to historical yields under a 100ppm increase in CO2.

Result: McGrath and Lobell , 2013, p. 5, �g. 4 (obtained US result from authors).
Impact function: We contacted the authors and received estimates of the CO2 fertilization relationship

with yields of di�erent crops on January 17th, 2014, speci�cally for the US. Data were
for 8 di�erent crop types. We used an average of all types for cotton estimates.

3.1.1. Storage

In adition to the above impacts on yields, we observe that farmers store crops for sale in the future,
and so the overall impact of climate on supply of crops may appear smoother than if there were no stor-
age. For our projections, we also make use of Fisher et al. (2012, Appendix p.xi, table A4) to estimate crop
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Figure B3: Predicted consumption of maize, modeled as a moving average of production. Predicted values compare well to
observed consumption, and allow us to project the smoothed consumption values out to the end of the century.

consumption as a moving average process of crop production. We estimated the following equation for crop c,

ln(consumption)c,t =
L∑
l=0

[βc,l × ln(production)c,t−l] + θct+ γct
2 + εc,t

where L = 2 and L = 3 for soyebans, and we account for linear and quadratic time-trends. Results of
this process are shown in �g. B3. We project the smoothing of future crops with a time-series structure
that incorporates these empirical results on storage. Weights for each crop are constructed from the lagged
coe�cients, βl, presented in section 4.1.

3.2. Crime

Jacob, Lefgren, and Moretti (2007)

Outcome data: FBI National Incident Based Reporting System
Climate data: Weekly temperature and precipitation from the NCDC GHCN-Daily database.
Sample period: 1995-2001
Sample unit: Jurisdiction-weeks
Methodology: Linear response of log(crime_rate) to average temperature and precipitation, control-

ling for jurisdiction-by-year and month �xed e�ects, as well as jurisdiction-speci�c 4th

order polynomials in day of year.
Result: Modi�ed version of Jacob et al., 2007, p. 508-509, table 2.
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Impact function: We obtained data and replication �les from the authors and generated coe�cients
for a month-long exposure window, to account for displacement of crime, as noted in
the text. The climate variables are at weekly resolution, and in order to make this
comparable to Ranson (2014) we reran the analysis using maximum temperatures and
then scaled the coe�cients in Jacob et al. (2007). We did this by �rst dividing the
coe�cient for the monthly exposure by 7, to get a daily response, and further by 4
to account for the lagged climate variables. This resulted in the marginal e�ect on
crime of a 1◦F increase in daily temperature. Taking a reference point of zero response
at a temperature of 65◦F (to coincide with the central point of the reference bin of
(Ranson, 2014)) we derived a linear response of violent crimes and property crimes to
temperature and precipitation.

Ranson (2014)

Outcome data: FBI Universal Crime Reporting Data.
Climate data: Daily temperature and precipitation from the NCDC GHCN-Daily database.
Sample period: 1960-2009
Sample unit: County-months
Methodology: Non-linear response of log(crime_rate) to maximum temperature and precipitation,

controlling for county-by-year and state-by-month �xed e�ects. Temperature is trans-
formed into number of days within 10◦F bins, with the 60-69◦F bin as a reference
point.

Result: Ranson, 2014, p. 9, �g. 4
Impact function: We contacted the author and received updated estimates of the percentage change

for each of 8 di�erent classes of crimes on March 12th, 2014. To derive response
functions, we grouped these into violent crimes (murder, rape, aggravated assault, and
simple assault) and property crimes (robbery, burglary, larceny, and vehicle theft), and
combined results within each class of crimes.

3.3. Health

Deschenes and Greenstone (2011)

Outcome data: National Center for Health Statistics Compressed Mortality Files.
Climate data: Daily temperature and precipitation from NCDC
Sample period: 1968-2002
Sample unit: County-years
Methodology: Non-linear response of mortality to temperature, controlling for county-by-age-group

and state-by-year-by-age-group �xed e�ects. Temperature is transformed into number
of days in an year-long window within 10◦F bins, with the 50-59◦F bin as a reference
point.

Result: Modifed version of Deschênes and Greenstone, 2011, p. 9, �g. 2
Impact function: We contacted the authors and received estimates on November 5th, 2013. To make

the study comparable to Barreca et al. (2013), the main analysis was rerun with
log(mortality) as an outcome.

Barreca, Clay, Deschenes, Greenstone, and Shapiro (2013)

Outcome data: Mortality from the Mortality Statistics of the US (pre-1959) and the Multiple Cause
of Death �les (post-1959).

Climate data: Daily temperature and precipitation from the NCDC GHCN-Daily database.
Sample period: 1929-2004
Sample unit: State-months
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Methodology: Non-linear response of log(mortality) to temperature, controlling for state-by-month
and year-month �xed e�ects, and state-by-month-speci�c quadratic time trends. Tem-
perature is transformed into number of days in a two-month window within 10◦F bins,
with the 60-69◦F bin as a reference point.

Result: Modi�ed version of Barreca et al., 2013, p. 37, table 3, panel B
Impact function: We contacted the authors and received estimates on 5th November, 2013. The preferred

speci�cation, to account for forward displacement, was to use monthly mortality with a
2-month exposure window to temperature. We used the estimated response from 1960-
2004. To make this response comparable to the response of Deschenes and Greenstone
(2011), the analysis was rerun with the reference point changed to the 50-59◦F bin.
To scale the coe�cients, we divided each coe�cient value by a factor of six. We also
obtained age-speci�c response functions for ages 0-1, 1-44, 45-64, and 65+.

3.4. Labor

Gra� Zivin and Neidell (2014)

Outcome data: Hours worked from the American Time Use Survey.
Climate data: Daily temperature, precipitation, and humidity from NCDC.
Sample period: 2003-2006
Sample unit: Person-days
Methodology: Seemingly-unrelated regression allowing for correlated errors between time spent work-

ing, or indoor and outdoor leisure. Non-linear response to maximum temperatures
controlling for county, year-by-month, and day of week �xed e�ects, as well as individ-
ual level controls. Temperature is transformed into number of days within 5◦F bins,
with the 76-80◦F bin as a reference point.

Result: High-risk: Gra� Zivin and Neidell , 2014, p. 15, �g. 3; Low-risk: Gra� Zivin and

Neidell , 2014, p. 16, �g. 4
Impact function: We contacted the authors prior to publication and received full estimates for high-risk

and low-risk labor responses to temperature on December 18th, 2013.

4. Application of Impact Functions

We apply two approaches for sampling the conditional distributions for each impact function: a Monte
Carlo approach and a constant quantile approach. The Monte Carlo approach captures the full range of
uncertainty in impact functions estimates, under the assumption that each impact function is independent.
We randomly select quantiles for each of the 26 empirical distributions. The constant quantile approach
applies the same quantile across all distributions. In particular, we use a low quantile (p = 0.33333), median
quantile (p = 0.5) and high quantile (p = .66667). The ordinality of the quantiles is chosen so that these
describe, in essence, low, median, and high impact scenarios. High quantiles correspond to greater losses
in yield and labor productivity, and greater increases in crime and mortality, within the range of statistical
uncertainty.

Under either approach, the same quantile is used across the entire range of the conditioning variable. By
evaluating each impact function at a quantile, we generate a single-dimensional, deterministic function which
is used in the evaluation of the impact for each Monte Carlo or constant quantile run.

The impact results for crime, labor productivity, and mortality are all estimated by binning weather values.
In these cases, we construct a continuous impact curve by linearly interpolating between the midpoints of
these bins.

Impact results were produced in �result sets� that consisted of an impact value for each year in each county
in the US. Result sets are grouped into �batches�, with a result set for each RCP (2.6, 4.5, 6.0, and 8.5), each
GCM model or model surrogate (from 28 to 44 models in each RCP), and each of 10 weather realization, for
a total of 1440 result sets per batch. We produced 25 batches of Monte Carlo results. These results are later
combined and weighted as described in section 7. Twenty-six conditional distributions were used to generate
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Figure B4: All 26 dose-response functions used in our analysis. 95% con�dence intervals are shaded.
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Figure B5: Quantiles of the response functions, showing the impact functions that would be used in evaluation for quantiles of
p ∈ {.1, .3, .5, .7, .9}. CO2 fertilization graphs show evolution for RCP 4.5.

15 impact results. These calculations are described below. Throughout, impacts are ultimately reported
relative to 2012, the baseline year for the CGE model. The de�nitions of each impact below do not re�ect
this.

Below, we use the notation TAVG for mean daily temperature; TMIN and TMAX for minimum and
maximum daily temperature, respectively; and P for for precipitation. All weather variables are provided at
the county-level and on a daily basis. Below, where counties are index by j, weather variables are implicitly
also indexed by j. We index days in the year by d and years by t.

4.1. Agricultural Yields and Production

Percent changes in agriculture production, relative to 2012, were generated using �xed, county-speci�c
growing seasons. The growing season, denoted S(j) for county j, is determined using the centroid of the
county applied to the planting and harvesting dates in Sacks et al. (2010). For maize and wheat, for which
Sacks et al. (2010) provides two calendars (two croppings for maize, and summer and winter wheat), the
calendar that represented the greatest portion of land area in each county was used.

Relative changes in yield are calculated based on seasonal temperatures and precipitation as follows:

Wheat Wheat uses a seasonal average temperature response function:

Yjt = f

 1

N(S(j))

∑
d∈S(j)

TAVG,d


where f(·) is calculated by Hsiang et al. (2013a), as a function of average mean daily temperature
over the growing season, and N(S(j)) is the number of days in the growing season for county j. This
functional form was only used for wheat, since a degree-day representation was unavailable.
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Cotton Cotton uses a single degree-day function:

Yjt = ef(0.01
∑

d∈S(j)DDlow(TMAX,d,TMIN,d),0.01
∑

d∈S(j)DDhigh(TMAX,d,TMIN,d))+g(1× 10−3 ∑
d∈S(j) Pd)

where DDlow and DDhigh are growing degree days below and above the crop-speci�c breakpoint speci-
�ed in Schlenker and Roberts (2009), and calculated as speci�ed there using the minimum and maximum
daily temperatures. The functions f(·) and g(·) translate degree days and precipitation, respectively,
into yield e�ects.

Maize and Soybeans Maize and soybeans have two degree-day responses:

Yjt =

{
efeast(0.01

∑
d∈S(j)DDlow(TMAX,d,TMIN,d),0.01

∑
d∈S(j)DDhigh(TMAX,d,TMIN,d))+geast(1× 10−3 ∑

d∈S(j) Pd)

efwest(0.01
∑

d∈S(j)DDlow(TMAX,d,TMIN,d),0.01
∑

d∈S(j)DDhigh(TMAX,d,TMIN,d))+gwest(1× 10−3 ∑
d∈S(j) Pd)

Here, feast(·) and geast(·) are used to the east of the 100th meridian, excluding Florida. In this areas,
irrigation is less common and the response to increased temperatures is more extreme.

Figure B6 shows distributions of degree days for RCP 6.0, under the MIROC-ESM-CHEM model.
CO2 fertilization is modeled as a multiplicative factor applied to yields, and estimated as a linear increase

for each additional 100 ppm of CO2:

Y ′jt = Yjt

(
1 +

Ct − C2012

100
X

)
where Ct is the CO2 concentration in year t under a given RCP, and X is the estimated CO2 fertilization
e�ect, which varies from 3% to 12% depending on the crop, from McGrath and Lobell (2013). McGrath and

Lobell (2013) does not provide a value for cotton, so the Bayesian combination of all provided crop e�ects is
used for it.

Economic output from the agricultural sector is not synonymous with yield, due to strategic storage. We
model output as an autoregressive process of yields, as estimated from USDA data. For grains and cotton,
the expression is:

Ijt = 0.51Yjt + 0.28Yj,t−1 + 0.21Yj,t−2

A four-year moving average is used for soybeans:

Ijt = 0.2Yjt + 0.52Yj,t−1 + 0.19Yj,t−2 + 0.1Yj,t−3

4.2. Crime

Both violent and property crime are calculated as,

Ijt =

1 + 0.01
1

12

∑
d∈y(t)

f(TMAX,d)

1 + 0.01
1

12

∑
d∈y(t)

g(Pd)


where y(t) is the set of days in year t, f(·) is a function of daily maximum temperature, and g(·) is a function
of daily precipitation. Both f(·) and g(·) are calculated as a Bayesian combination of the e�ect for each
sub-category of crime estimated by Ranson (2014) and the average e�ect for violent or property crime from
Jacob et al. (2007).

4.3. Mortality

Both average and age-speci�c mortalities are calculated as,

Ijt =
∑
d∈y(t)

f(TAVG,d)

The parameters of f(·) are calculated as a Bayesian combination of the results from Deschênes and Greenstone

(2011) and a corrected form of Barreca et al. (2013). Age-speci�c mortalities, for newborns, ages 1-44, ages
45-64, and ages 65 and up, are provided by Barreca et al. (2013).

Mortality is reported both as percentage changes, and as di�erences in the mortality rate. In either
case, the pooled and age-speci�c mortality rates per county are from the Center for Disease Control and

Prevention (2013).
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Figure B6: Distributions of the degree days across all US counties in the lower (left) and upper (right) bins of Maize, which has
a 29◦C bin threshold. The rows represent the average of degree days between 2000 and 2009, and for the years 2020 and 2080.
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4.4. Labor Productivity

The structure of the labor productivity calculation is identical for high-risk and low-risk sectors:

Ijt =
H + 1

60

∑
d∈y(t) f(TMAX,d)

H

where H is the average number of hours worked per year in the baseline. For high-risk labor, H = 7.67×365,
and for low-risk labor, H = 6.92 × 365. The parameters of f(·) are provided by Gra� Zivin and Neidell

(2014).

5. Adaptation

The empirical approach used to estimate adaptation applies observed rates of adaptation from recent
history to regional di�erences in response functions to capture the existing capacity for adaptation. Here, we
describe the general structure for estimating adaptation. Additional details are added in sections speci�c to
each adapted response, below.

Each impact response starts from the same baseline as the unadapted case, in the year 2000. It then
transitions asymptotically toward a future shape. The evolution of each parameter of the distribution follows,

β(t) = β(∞) + (β(tbefore)− β(∞))e−(t−tbefore)/τ

where β(∞) is the maximum possible adaptation, which in the cases considered here represents no response
to temperature, β(tbefore) is the parameter from a historical period, as estimated for a period centered on
tbefore, and τ determines the rate of evolution of the parameter.

Using parameters estimated for second period, we calculate the rate of adaptation, τ , as,

τ = − tafter − tbefore
log(β(tafter)− β(∞))/(β(tbefore)− β(∞))

where β(tafter) is the parameter value during a period centered on tafter. This process is represented on the
left of �gure B9.

We further manipulate τ into an incremental product, γ = e−1/τ , so that,

β(t+ 1) = γβ(t) + (1− γ)β(∞) (B1)

With the exception of maize, a di�erent β(∞) is used for determining the rate of evolution (τ and γ)
as is used for estimating the �nal evolution of the parameter values. The β(∞) used to estimate the actual
evolution of the parameters is thought of as the parameter value for a fully adapted region of a particular
temperature. As a result, it is a function of average temperature: the response curve for New England, under
the current climate, is considered to be fully adapted to a colder average temperature than the response curve
for the Southwest. To estimate how β(∞) changes with temperature, we use values from several regions in
the US, treated each as fully adapted to its current climate.

Speci�cally, we construct a linear approximation of the evolution of β(∞) across di�erent regions, as
characterized by their average temperature T̄ . Let this function be denoted f(T̄ ). At any point in time, T̄ is
calculated as the average temperature over the previous 15 years, and β(∞) = f(T̄ ). This allows the fully-
adapted coe�cients to be predicted both between the temperatures of observed regions, and extrapolated
beyond them. The process is shown on the right of �gure B9.

Each section below describes the evidence used to estimate the temporal evolution of impact responses
(the rate of adaptation, τ), and the spatial estimation (how β(∞) varies with T̄ ).

5.1. Maize in the Eastern U.S.

Increasing the availability of irrigation is a key adaptation to climate change, since the additional water
allows crops to continue to grow at higher temperatures. Fields to the east of the 100th meridian are much
less consistently irrigated than those to the west. This helps explain the lower response to killing degree-days
in the west (β =−0.21, compared to −0.62) (Schlenker and Roberts, 2009).
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Figure B7: Evolution of impacts for FIPS 17161, Rock Island, IL, under RCP 6.0 as modeled by MIROC-ESM-CHEM. In the
top panel, the left axis measures linear changes in temperature (◦C ) and CO2 (100 ppmv). The right axis measures changes in
rainfall relative to 2000-2009 annual mean. In the lower panel, both axes show fractional changes in each of the sectors relative
to 2000-2009 annual mean.
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Figure B8: Experiments with FIPS 17161, Rock Island, IL, under RCP 6.0 as modeled by MIROC-ESM-CHEM. The black line
denotes a baseline between 2004 and 2010. The red line is applies a 1◦C increase on all temperatures. The green line applies a
30% increase on all precipitation.
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Figure B9: Left: Estimation of temporal evolution of variable values. A historical estimate (at t0) and a current estimate (at
t1) are used to �t an exponential, characterised by γ. Right: Estimation of adaptation as a function of average temperature.
Regional estimates (in red) are used to produce a linear approximation for the way that the coe�cient varies with average
temperature (T̄ ), which is then evaluated (green) to determine coe�cients at future times.
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5.1.1. Temporal Evolution

The killing degree-day coe�cient has evolved over the course of the last half century, as shown on the left
of �gure B10. Using Monte Carlo draws from these distributions and �tting exponentials, γ is calculated to
be 0.997 22± 0.005 73. We approximate the distribution of values for γ with a Gaussian, as shown on the
right of �gure B10. This corresponds to a very slow rate of adaptation, with a time constant of about 360
years (Burke and Emerick , 2013).
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Figure B10: Left: Killing degree-day coe�cients computed for 5-year periods between 1955 and 2000. Red lines show the 90%
con�dence interval on the exponential evolution of the killing degree-day coe�cient. Right: Values of γ computed in the Monte
Carlo, and the corresponding Gaussian approximation.

We hold constant the growing degree-days coe�cient; only the killing degree-day coe�cient adapts. Since
the growing degree-day coe�cient is higher in the east than in the west, this may result in an optimistic
consideration of the trade-o�s that result from adaptation.

5.1.2. Spatial Estimation

No extrapolation is performed for maize. Instead, each year the killing degree-day coe�cient in the East
is updated according to equation B1.

5.2. Temperature-Related Mortality

5.2.1. Temporal Evolution

For temperature-related mortality, we assume that there are two parallel adaptations occuring: one for
cold temperatures and one for hot temperatures. The rate of temporal evolution for these processes is
estimated as the mean of the values of γ for each bin for which T < 65◦F , and for each bin for T > 65◦F ,
respectively. Figure B11 shows the coe�cient estimates for each bin and the calculation of γ for the median
of these coe�cient distributions. In the evaluation of actual impacts, Monte Carlo draws are taken from the
various distributions, and the value of γ is estimated separately for each Monte Carlo run. The time constant
for the cold-related mortality is 31.3 years, and for heat-related deaths is 84.0 years.

5.2.2. Spatial Estimation

Estimates were given for four regions: the Northeast, Midwest, South, and West. These, along with the
pooled estimate, were used to construct a linear approximation. See �gure B12.

5.3. Violent and Property Crime

The process for estimating adaptation for crime is similar to the process for temperature-related mortality.
Pooled results for all forms of property crime and all forms of violent crime were used, as segregated by regions
with di�erent maximum temperatures, from Ranson (2014). Since the maximum temperature for the national
estimate was very similar to the segregated 65◦F region, and because the national estimate for the highest
temperature bin is outside of the coe�cient range of the segregated regions, we used the 65◦F response
function as the baseline for estimating adaptive capacity.
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Figure B11: Historical coe�cient estimates for cold-related (left) and heat-related (right) mortality. Red shows the time evolution
based only on the single coe�cient, while green shows the pooled time evolution for all coe�cients in that set.
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Figure B12: Linear approximations for β as a function of T̄ . Excess mortality for days of a given temperature is clipped at 0.
A single coe�cient was provided for cold-related mortality (T < 65◦F ).
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5.3.1. Temporal Evolution

Estimates for periods centered at 1960 and 2000 were used to estimate the temporal evolution of crime
adaptation. Two rates were calculated: one for bins below 65◦F and one for bins above that value (which
also corresponds to the dropped bin in Ranson (2014)). These calculations are shown in �gure B13.

For violent crime, the time-constant is 71.2 years for the lower range of temperatures and 139 years for
the upper range. For property crime, the time-constants are 793 years and 16.4 years, respectively.

5.3.2. Spatial Estimation

Estimates were analyzed from regions with an average maximum temperature of T = 45◦F , T = 55◦F ,
T = 65◦F , and T = 75◦F . Figure B14 shows these estimates by bin.

6. Return Intervals

The number of events exceeding a given threshold is used to communicate return periods of extreme
events. We identify the threshold for the 1-in-20 event and count the number of events that exceed this
threshold for each 20 year window over the course of the 21st century.

The expected number of events across models for an investment in year t is calculated as a weighted sum,∑
i

wieit

where wi is the weight given to model i and eit is the number of events exceeding a threshold experienced
in the 20 years following year t. That is, for a threshold x, eit is the number of impacts yiτ ≥ x for
τ ∈ t, . . . , t+ 19.The threshold is chosen such that the expected number of events for the period 1990 - 2009
is approximately 1.These thresholds vary slightly between RCPs, due to the di�erent collections of models
used to estimate each RCP. The curves are shifted slightly (∆y < .1) for display purposes.

7. Impact aggregation

County level results are aggregated to the state, NCA-region, and national levels. This section describes
the weighting of results for these aggregations.

7.1. Grain aggregation for CGE analysis

Grains yields (maize and wheat) are both combined within the same county and aggregated to higher
scales by calories totals. Within each county, the average impact is,

Ii =
Iwheati Awheati Cwheat + Imaizei Amaizei Cmaize

Awheati Cwheat +Amaizei Cmaize

where Awheati is the average acres of wheat planted between 2000 - 2005, and Amaizei is the average acres
for maize. Cwheat and Cmaize, the calorie density of wheat and maize, are taken to be 1690 calories/kg and
1615 calories/kg, respectively. The weighting of each county result for aggregation to higher scales is

Wi = Awheati Cwheat +Amaizei Cmaize

7.2. Cotton and soybean aggregation for CGE analysis

Cotton and soybean results are aggregated by weighting by the total area planted, as averaged over 2000
- 2005. Since impacts are proportional to changes in yields, and yields are calculated relative to area planted,
this is equivalent to weighting counties by production.

7.3. Agricultural aggregation for distributions and maps

All crops are weighted by production (in 1000MT) for constructing total agriculture impact distributions
and maps. Production is calculated from the USDA reported bushels measurement using 56 lbs/bushel and
60 lbs/bushel for soy and wheat, and averaged over 2000 - 2005. The data used here and in the CGE
aggregations above come from reproduction data for Schlenker and Roberts (2009).
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(a) Historical coe�cient estimates for violent crime driven by maximum temperatures below (left) and above (right)
65◦F . Red shows the time evolution based only on the single coe�cient, while green shows the pooled time evolution
for all coe�cients in that set.
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(b) Historical coe�cient estimates for property crime driven by maximum temperatures below (left) and above (right)
65◦F . Red shows the time evolution based only on the single coe�cient, while green shows the pooled time evolution
for all coe�cients in that set. The value of γ for the bins at T = 12.7778, T = 23.8889, and T = 29.4444 cannot be
estimated since the two estimates are on opposite sides of the zero-line.

Figure B13
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Figure B14: Estimates for the e�ect of temperatures within each temperature bin, for four regions (characterized by T = 45,
T = 55, T = 65, and T = 75). The green estimate is the national average estimate, at a national average maximum temperature
of 65.88603◦F , but was not used for the estimation. The red lines were used for interpolating and extrapolating coe�cient
values, based on temperature.

Figure B15: Results were aggregated for passing to the CGE model at both state and NCA region (colors).
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7.4. Crime aggregation

Counties are weighted by the number of reported property and violent crimes from the Uniform Crime
Statistics, averaged over 2000 - 2005, and provided for reproduction of Ranson (2014).

Counties that are not explicitly identi�ed at the county level (of which there are 172) are aggregated
using the mean country rates of property and violent crime. Furthermore, since we use the 2010 census for
county populations, these rates are scaled by 0.9339, the ratio of the average national population in 2000 -
2005 to the population in 2010, before being scaled by the individual county populations in 2010, to maintain
comparability.

7.5. Labor aggregation

Labor employment by county is averaged over 2000 - 2005, as reported by the Bureau of Labor Statistics
(Bureau of Labor Statistics, 2014). Following Gra� Zivin and Neidell (2014) high-risk sectors consist of
agriculture, forestry, �shing and hunting; mining, quarrying, and oil and gas extraction; utilities; construction;
manufacturing; and transportation and warehousing. All others are considered low-risk.

The BLS statistics exclude the counties represented by FIPS codes 02105, 02195, 02198, 02230, and 02275,
since these were created after 2005.

7.6. Mortality aggregation

Counties are weighted by 2010 census populations for aggregating mortality.

7.7. Distributions across result sets

Within each RCP, models are weighted to capture a desired distribution of temperatures, as described
in section 1.4 of Technical Appendix I. The weighting process for results for a given weather realization of
a given RCP involves constructing an ECDF as follows. Let the calculated value of an impact in a given
county and year for model m ∈ {1, . . . ,M} be Im. The CDF of this impact across all models is,

F (I) =
1∑
m wm

∑
m for Im≤I

wm

where wm is the weight given to model m provided in Tables A3 - A6. Extending this process to multiple
weather realizations and multiple batches is done by simply including all available results in the weighted
ECDF. Unweighted results are reported in table B10.
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8. Linear Extrapolation Assumption

In this section, we consider the consequences of extending impact functions linearly beyond their support.
The standard implementation of the impact response functions assumes a �at extrapolation, where the
coe�cients used in the edge bins remain constant when extrapolated beyond the response function support.
In several of the empirical impacts, the response as a function of temperature appears to grow linearly
with temperature at the extreme. This is particularly true for mortality and high-risk labor productivity.
Agricultural yields are implicitly linearly extrapolated (and estimated as such) since they are in terms of
degree-days. Figure B16 displays how quantiles of impact responses change under a linear extrapolation
assumption.

The e�ect of the linear extrapolation assumption is shown in the tails of the distributions and at extreme
temperatures (end of century for RCP 8.5). Most impact distributions become wider, although property crime
shows narrowing of impacts under linear extrapolation. This is because, while crime generally increases with
temperature, it decreases at the very-high end of both temperature and precipitation. Violent crime shows
very little change, because of the �at response at high temperatures.

The e�ects on the tails of the health and labor distributions is large: at the 90th percentile in high-risk
labor, the impact increases from -.5% to -.7% (a 40% increase), and in mortality, the additional mortality
increases from 20 per 100,000 to 24 per 100,000 (a 20% increase).
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Figure B16: The evolution of impact response quantiles, under �at and linear extrapolation, under RCP 8.5 at a national level.
The lines are quantiles (labeled at the top), showing how these shift between �at extrapolation (bottom) and linear extrapolation
(top).
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