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CHAPTER 1 

The Importance of Decarbonizing Light-Duty 
Vehicles

To meet its nationally determined contribution under 
the Paris Agreement, the US must reduce greenhouse 
gas (GHG) emissions by 50-52% below 2005 levels by 
2030. Achieving this ambitious goal will require a 
concerted effort across all levels of government and in 
all sectors of the economy (Larsen, et al., 2021). 
Furthermore, this interim target only gets the country 
halfway toward its goal of net-zero greenhouse gas 
emissions by 2050 (Department of State and Executive 
Office of the President, 2021). 

Though the power sector had historically been the 
largest GHG emitter, since 2016, the transportation 
sector has claimed that title (Figure 1). Moreover, while 
the Inflation Reduction Act (IRA) is projected to 
decrease economywide GHG emissions to 32-42% 
below 2005 levels, much of that reduction comes in 
continued gains in the power sector rather than 
substantial reductions in other parts of the economy 
(Larsen, et al., 2022). While we project power sector 
emissions fall to 69-79% below 2005 levels, 
transportation emissions only drop to 18-26% below 
2005 levels. Further, even with the incentives provided 
in the IRA, we expect the transportation sector to 
remain the highest-emitting sector through 2035. Put 
another way, there are plenty of emissions left to cut in 
the transportation sector, and additional policy action 
will be necessary to drive down transportation sector 
emissions and keep the US on its decarbonization 
pathway through 2030 and beyond.  

The transportation sector is diverse in its energy use 
and sources of emissions, but the largest share—more 
than half—comes from the combustion of liquid fuels 
in light-duty vehicles (LDV) (Figure 2). Though 
reductions will be required across the board in a net-
zero transportation sector, commercial technologies 
(like electric vehicles and other zero-emitting vehicles, 

or ZEVs) are most widely available today to reduce 
emissions from LDVs, making them a promising place 
to work on driving further emissions reductions.  

FIGURE 1 
Historical and projected US GHG emissions  
Million metric tons of CO2-equivalent, projections in dashed 
lines 

 

Source: Rhodium Group. Projections reflect central emissions scenario from Larsen, 
et al., 2022. 

Progress is already underway on this front. The Energy 
Information Administration (EIA) reported that 
electric vehicle sales represented nearly 5% of total LDV 
sales in the fourth quarter of 2021, up from less than 1% 
just a few years prior (Dwyer, 2022). But the LDV fleet 
faces a stock turnover problem: in any given year, only 
a small percentage of LDVs on the road are new, such 
that even if 100% of LDV sales are ZEVs starting in 
2030, the fleet wouldn’t be fully ZEV until after 2040 
(Larsen, King, Kolus, & Wimberger, 2021). Every 
vehicle sale today matters, given how long it will be on 
the road. 
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FIGURE 2 
US transportation emissions by source in 2021 
Percentage of total transportation sector CO2e emissions 

 

Source: Rhodium Group. Note: Other includes emissions from mobile combustion, 
pipelines, and HFCs from mobile A/C. 

Given this context, it is critically important to 
understand consumer adoption of zero-emitting LDVs 
to inform policy design to further this goal. Of course, 
the price of owning and operating a vehicle is a critical 
factor in a consumer’s vehicle purchasing choice. But, 
depending on the analysis, cost parity between some 
ZEVs and their conventional internal combustion 
engine (ICE) counterparts is either fast approaching or 

has already been achieved (Lutsey & Nicholas, 2019; 
Harto, 2020; Orvis, 2022). Since ZEV sales shares are 
still low relative to incumbent ICE vehicles, further 
explanation is necessary to understand what drives this 
outcome. Numerous methodological approaches have 
been developed and deployed in a wide range of 
consumer adoption models that seek to inform this 
understanding further.   

This study seeks to inform policymakers and the 
modeling community by reviewing the range of 
consumer adoption modeling approaches used in 
projecting future ZEV sales. The study first reviews 
three main categories of consumer adoption 
techniques—market diffusion models, consumer 
choice models, and agent-based models—and explains 
their basic function and the strengths and weaknesses 
of each approach. We then dive deeper into specific 
consumer choice models used in policy-relevant 
modeling contexts. Finally, we offer some concluding 
thoughts.
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CHAPTER 2 

Models for Projecting LDV Adoption

As hybrids, electric vehicles, and a range of other 
alternative fuel LDVs and ZEVs have emerged into the 
auto marketplace, a rich literature of technology 
adoption modeling has developed to forecast their 
future sales. This work often extends techniques 
developed in different fields to explain the factors 
behind LDV adoption and project future technology 
adoption trends. In this chapter, we provide a brief 
overview of the three most popular models used for 
LDV market forecasts: market diffusion models, 
consumer choice models, and agent-based models.  

Market diffusion models 

Market diffusion models are used to forecast the 
adoption patterns of new technologies over time. They 
were first introduced in the marketing discipline in 1969 
with the publication of the Bass new product diffusion 
model. The mathematical model captures new product 
life-cycle dynamics and serves as a decision aid for 
product launch decisions (Mahajan, Muller, & Bass, 

1990). Since then, they have been applied in various 
markets, including energy, transportation, and 
telecommunications (Al-Alawi & Bradley, 2013). 

Diffusion models are grounded in the diffusion of 
innovation theory, which describes the rate of an 
innovation’s adoption as an S-shaped curve and seeks 
to explain the rate of new product diffusion in the 
market (Shogren, 2013). Several internal and external 
factors, which may or may not be controllable, 
influence new product adoption (Mansfield, 1961).  In 
LDV adoption, the amount of media advertising done to 
promote the new vehicle technology is an example of an 
external factor, while free marketing about the new 
vehicle technology triggered by the experiences of early 
adopters is an example of an internal factor. Other 
examples of relevant external factors may include 
government support and the availability of supporting 
infrastructure (e.g., charging stations). Other internal 

FIGURE 3 
S-shaped adoption curve and stages of adoption 
Cumulative adoption percent (dashed line); percent of market comprised of a given stage (distribution) 

  

Source: Rhodium Group, based on Briscoe, Trewhitt, and Hutto (2011) 
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factors may include vehicle price and usability (Zhu & 
Du, 2018).  

Everett Rogers, the originator of diffusion of innovation 
theory, suggested that these factors of influence include 
the innovation itself, adopters, communication 
channels, time, and social systems (Rogers, 1995)  

The diffusion of innovation theory is typically modeled 
as a bell-shaped, normal distribution reflecting the 
shares of adopter types at different stages in a product’s 
life cycle. The distribution is broken up into five main 
categories of adopters: innovators, early adopters, early 
majority, late majority, and laggards, as demonstrated 
in Figure 3 (Rogers, 1995).  

The three most common diffusion models used for the 
automotive market are the Bass, Gompertz, and 
Logistic models (Al-Alawi & Bradley, 2013). All three 
models describe an S-shaped cumulative adoption 
curve—however, they differ in terms of their functional 
form and the rates at which asymptotic limits are 
reached. 

The Bass formulation is defined as:  

 𝑌𝑌(𝑡𝑡) = 𝑀𝑀 ∗  1−𝑒𝑒−(𝑝𝑝+𝑞𝑞)𝑡𝑡

1+ 𝑞𝑞𝑝𝑝∗𝑒𝑒
−(𝑝𝑝+𝑞𝑞)𝑡𝑡                     (2.1) 

where Y is the total number of adopters at time t; M is 
the market potential or ultimate number of adopters; p 
is the coefficient of innovation; and q is the coefficient 
of imitation (Sudtasan & Mitomo, 2017; Al-Alawi & 
Bradley, 2013). The coefficients of innovation and 
imitation reflect external and internal influences on 
rates of product adoption, respectively. 

The Logistic model formulation is defined as:  

𝑌𝑌(𝑡𝑡) = 𝑀𝑀
1+ 𝑒𝑒−𝑎𝑎(1−𝑏𝑏)                                   (2.2) 

where M is the market potential, a describes the speed 
at which adoption occurs, and b denotes the inflection 
point at which 50% market potential is reached 
(Sudtasan & Mitomo, 2017; Al-Alawi & Bradley, 2013).  

Lastly, the Gompertz model formulation is similar to 
the Logistic formulation:  

𝑌𝑌(𝑡𝑡) = 𝑀𝑀 ∗ 𝑒𝑒−𝑒𝑒−𝑎𝑎(𝑡𝑡−𝑏𝑏)                            (2.3) 

where M is the market potential, a describes the speed 
at which adoption occurs, and b denotes the inflection 
point at which 36.8% of market potential is reached 
(Sudtasan & Mitomo, 2017; Al-Alawi & Bradley, 2013).   

Most of the parameters of these diffusion models can 
be estimated using regression analysis and historical 
sales data for the new vehicle technology of interest. 
When sales data does not exist because the technology 
has not yet reached the marketplace, adoption 
parameters can be derived from survey inferences or 
from analog technologies believed to exhibit similar 
market behavior (Al-Alawi & Bradley, 2013). In addition 
to this historical data, diffusion models require 
exogenous estimates of the long-run ultimate market 
potential and the period in which peak sales occur (Al-
Alawi & Bradley, 2013). Once the models have been 
estimated, they can be used to predict cumulative 
adoption levels for new vehicle technologies over time.  

Another common assumption underlying all three 
models is the notion of product generation—that 
vehicle technologies are periodically redesigned or 
updated and sold in successive generations (Al-Alawi & 
Bradley, 2013). The length of time between successive 
generations will often differ from one technology to 
another. 

The Bass model has been used to forecast the adoption 
of new technologies based on interactions between 
adopters and potential adopters (Bass, 1969). It is 
applied under the assumption that no competing 
technology exists in the market. Adopters reflected in 
the model are identified as either innovators or 
imitators. Innovators are the early adopters of a new 
technology that do so in response to a “mass-media” 
effect. In contrast, imitators are those that adopt in 
response to a “word-of-mouth” or “social contagion” 
effect (Al-Alawi & Bradley, 2013). The conceptual 
underpinnings of the model are that the degrees of 
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innovation and imitation drive the speed and timing of 
adoption.  

The Bass model has been extended to a generalized Bass 
model, a formulation that adds one or more explanatory 
variables to improve the model’s predictive power 
(Kinter-Meyer, et al., 2022). In ZEV adoption modeling, 
these additional variables have included vehicle price 
and the value of fuel saved (McManus & Senter Jr., 
2009). 

In addition to the Bass model, the Gompertz form has 
also been used in LDV market projections, and Logistic 
models have proven to be useful in applications where 
the new technology is assumed to be replacing some 
existing technology because it is more economically 
and technically efficient to do so (Ayyadi & Maaroufi, 
2018; Lamberson, 2009).  

Research applications 

Examples of studies applying diffusion models in the 
automotive market include a 2009 study by McManus 
and Senter (2009) in which a range of models are used 
to forecast adoption patterns of plug-in hybrid electric 
vehicles (PHEVs) in the U.S. The authors projected that 
PHEV sales would reach a maximum of 350,000 after 
seven to eight years. In a later study focusing on a non-
U.S. market, Ayyadi and Maaroufi (2018) predicted the 
diffusion of electric vehicles (EVs) in the Moroccan 
automotive market using the Bass, Gompertz, and 
Logistics models. Of the three models, they discovered 
that the Bass model fit their data the best. EV sales in 
the market were predicted to peak after 14 years, 
depending on government subsidies.  

Outside the academic literature, Bloomberg New 
Energy Finance (2022) uses a generalized Bass diffusion 
model, informed by a complementary total cost of 
ownership calculation, to project electric vehicle sales 
in its annual Electric Vehicle Outlook—a very 
commonly cited source of EV adoption projections. In 
addition, the International Energy Agency’s (2022) 
World Energy Outlook uses a Gompertz diffusion 
model to project total vehicle stock. 

Advantages and disadvantages 

Diffusion models have proven to be popular for 
predicting demand for new vehicle technologies. Much 
of this is due to their ease of implementation and how 
easily they can be estimated using historical data for the 
new technology itself or analogs with similar adoption 
characteristics.  

Diffusion models are also generally recognized as 
appropriate for use in “pre-production” and very early-
stage technologies (Becker & Sidhu, 2009). In 
particular, the inclusion of a parameter that 
incorporates network effects—the impacts of 
interactions between adopters and potential 
adopters—helps this formulation reflect a product 
increasing its market share non-linearly over time and 
based on others’ adoption behaviors (McManus & 
Senter Jr., 2009). 

One major disadvantage of diffusion models is that the 
total market size and period of peak sales must be 
exogenously estimated before the model can be 
developed (Wu & Trappey, 2008). Incorrectly 
estimating either of these parameters can yield 
different market outcomes with commensurately 
different emissions implications. In addition, diffusion 
models assume technologies diffuse within a market 
with no competitor technologies. Of course, this is not 
the case for the broader LDV market, so it is critical to 
define the market appropriately when projecting a 
given technology’s uptake.   

Consumer choice models 

Consumer choice models are statistical models used to 
predict choices made by individuals or groups. Their 
applications span social sciences, marketing research, 
transportation, and medicine. The logit model is the 
most heavily used choice model in the vehicle adoption 
literature. Logit models estimate the probabilistic 
preferences of consumers. More specifically, they 
theoretically or empirically model choices made by 
individuals from a finite set of alternatives (Train, 
2009). Consumer choice models like the logit operate 
within a framework of rational choice. They are 
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grounded in consumer utility theory, which states that 
given a finite set of options or choices (“choice set”), an 
individual will choose the option that maximizes their 
utility or well-being (Train, 2009).  

Consumer choice models are built on statistical 
relationships that relate an individual’s choice to the 
attributes of both the decisionmaker and the set of 
alternatives (Ying & Kuhfeld, 1995). In the context of 
the auto market, the type of vehicle chosen by a person 
is statistically influenced by personal characteristics 
like income and age, as well as attributes of the vehicle 
such as price, fuel efficiency, and ownership costs.  

Empirically estimating a choice model is a two-stage 
process. The first stage is generating a choice set of 
technologies available to each decisionmaker. Next, a 
utility model is fitted with consumer utility as the 
dependent variable and the characteristics of the 
buyers, characteristics of the choices, and an error term 
as explanatory variables. In modeling LDV choice, 
historical sales data is often used in conjunction with 
historical attributes of the choice set and buyer 
characteristics (Al-Alawi & Bradley, 2013). Once the 
final choice model is estimated, it can be used in 
conjunction with expectations of future buyer 
characteristics and vehicle attributes to forecast the 
relative market shares of each vehicle technology 
option over time.    

Historical data on vehicle attributes are sometimes 
limited or do not exist for new advanced technologies 
like EVs. Common workarounds include using survey 
inferences or alternative stated preference methods to 
derive sensitivities of choice to vehicle attributes (Cao, 
2006). However, relying on stated preference rather 
than revealed preference can introduce bias to the 
estimation as consumers may behave differently when 
faced with a purchase decision rather than responding 
to a survey (Liao, Molin, & van Wee, 2017). Attributes 
often incorporated into these models include price and 
other ownership costs, fuel efficiency, 
refueling/charging infrastructure availability, driving 
range, range anxiety, and frequency of battery 
replacement (Santini & Vyas, 2005). We review several 

consumer choice models and detail their explanatory 
variables in the next chapter. 

Multinomial logit (MNL) and nested multinomial logit 
(NMNL) models are two commonly used types of 
consumer choice models to evaluate vehicle purchases 
(Al-Alawi & Bradley, 2013). Both models are rooted in 
consumer utility theory, where an individual consumer 
chooses an alternative from a set of alternatives to 
maximize their utility (Train & Winston, 2007). This 
dynamic is depicted in Equation (2.4), where the 
probability (𝑃𝑃𝑖𝑖,𝑛𝑛) that the nth individual will select the 
ith alternative from a set C containing all possible 
alternatives j is specified as:  

                    𝑃𝑃𝑖𝑖,𝑛𝑛 = 𝑃𝑃(𝑈𝑈𝑖𝑖,𝑛𝑛 ≥ 𝑈𝑈𝑗𝑗,𝑛𝑛,∀𝑗𝑗 ∈ 𝐶𝐶𝑛𝑛, 𝑗𝑗 ≠ 𝑖𝑖)       (2.4) 

The basic multinomial logit model is described as: 

                                𝑃𝑃𝑖𝑖,𝑛𝑛 = 𝑒𝑒𝑈𝑈𝑖𝑖,𝑛𝑛

∑ 𝑒𝑒𝑈𝑈𝑗𝑗,𝑛𝑛𝑗𝑗∈𝐶𝐶𝑛𝑛
                          (2.5) 

where: 

                                   ∑ 𝑃𝑃𝑖𝑖,𝑛𝑛𝑖𝑖∈𝐶𝐶𝑛𝑛 = 1                          (2.6) 

The above utility equation for the nth consumer 
choosing the ith alternative (𝑈𝑈𝑖𝑖,𝑛𝑛) is defined as: 

                               𝑈𝑈𝑖𝑖 = ∑ 𝛽𝛽𝑛𝑛𝑋𝑋𝑖𝑖,𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑛𝑛                         (2.7) 

𝑋𝑋𝑖𝑖,𝑛𝑛 is an explanatory variable for the nth individual and 
the ith alternative. 𝛽𝛽𝑛𝑛 is the regression coefficient for 
𝑋𝑋𝑖𝑖,𝑛𝑛capturing the relative change in utility given an 
incremental change in the explanatory variable. 𝜀𝜀𝑖𝑖 is the 
random component for the ith alternative.  

Greene, Duleep, and McManus (2004) extend the basic 
multinomial logit approach to allow for model 
estimation with inference for the values of vehicle 
attributes. Their generalized cost coefficient approach 
describes an individual’s utility function associated 
with choosing a vehicle as a weighted sum of relevant 
attributes (e.g., price, reliability, efficiency). A random 
component is added to the utility function to capture 
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unquantified yet relevant attributes. The utility 
function is defined as: 

                        𝑢𝑢𝑖𝑖𝑗𝑗 = 𝑏𝑏(𝐴𝐴𝑖𝑖 + ∑ 𝑤𝑤𝑙𝑙𝑥𝑥𝑖𝑖,𝑙𝑙 + 𝜀𝜀𝑖𝑖,𝑗𝑗𝐾𝐾
𝑙𝑙=1 )             (2.8) 

where 𝑢𝑢𝑖𝑖𝑗𝑗 is the utility ranking score for the ith vehicle 
for the jth individual; b is a parameter determining the 
sensitivity of an individuals’ choices to changes in the 
dollar values of the alternatives; 𝐴𝐴𝑖𝑖 is a constant term 
that denotes the dollar value of attributes of vehicle i 
not included in the set of quantified attributes; 𝑤𝑤𝑙𝑙  is the 
weight of the lth attribute 𝑥𝑥𝑖𝑖,𝑙𝑙; and 𝜀𝜀𝑖𝑖,𝑗𝑗 is the jth 
individual’s random component for the ith vehicle make 
and model (Al-Alawi & Bradley, 2013). 

The conditional probability that the jth individual will 
choose the ith vehicle make and model given the kth 
vehicle class is defined by the MNL function: 

                                   𝑝𝑝𝑖𝑖|𝑘𝑘 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑖𝑖

∑ 𝑒𝑒𝑏𝑏𝑏𝑏𝑖𝑖𝐿𝐿
𝑙𝑙=1

                               (2.9) 

The probability 𝑝𝑝𝑖𝑖|𝑘𝑘 serves as an indicator of the ith 
vehicle’s market share given that the population of 
buyers is large enough (Greene, Duleep, & McManus, 
2004). 

As in Greene, Duleep, and McManus (2004), in cases 
where the vehicle choice set can be deconstructed into 
subsets or “nests”, a NMNL model is used to estimate 
the probability of an individual selecting a particular 
vehicle type based on a nested decision-making 
process. The nested decision involves the individual 
buyer first selecting a vehicle class, then selecting a 
vehicle make and model from within that class. The 
utility function for each kth vehicle class is a 
probability-weighted average of the utility scores of 
vehicles within the class. The expected utility function 
for the kth vehicle class is defined as: 

                       𝑈𝑈𝑘𝑘 = 1
𝑏𝑏

ln (∑ exp (𝑢𝑢𝑙𝑙,𝑘𝑘))𝑛𝑛𝑘𝑘
𝑖𝑖=1                      (2.10)  

The probability that an individual buyer will select a 
vehicle from the kth vehicle class is:   

                          𝑝𝑝𝑘𝑘 = exp (𝐴𝐴𝑘𝑘+𝐵𝐵𝐵𝐵𝑘𝑘,𝑖𝑖)
∑ exp (𝐴𝐴𝐾𝐾𝑛𝑛
𝐾𝐾=1 +𝐵𝐵𝐵𝐵𝐾𝐾,𝑖𝑖)

                           (2.11) 

In the above equation, K is the summation of all vehicle 
classes and n is the number of classes. Like 𝐴𝐴𝑖𝑖, 𝐴𝐴𝑘𝑘 is a 
class-specific constant term representing the dollar 
value of unquantified attributes of the kth vehicle class. 
Similarly, B is analogous to the parameter b, serving as 
a slope parameter measuring the sensitivity of class 
choices to changes in their expected values. 

The probability that the ith vehicle type will be selected 
from the kth vehicle class is the product of Equations 
(2.5) and (2.9). 

                                 𝑝𝑝𝑖𝑖𝑘𝑘 = 𝑝𝑝𝑖𝑖|𝑘𝑘 ∗ 𝑝𝑝𝑘𝑘                                      (2.12) 

The decision to use either an MNL or NMNL model 
largely depends on the assumptions about how 
consumers make decisions and the existence of 
correlation between alternatives (Train, 2009). A 
property of MNL models is the independence of 
irrelevant alternatives, which holds that the ratio of 
probabilities of choosing one alternative over another 
is unaffected by the addition (or removal) of another 
alternative (EPA, 2012). This assumption is generally 
violated in LDV choice modeling (and other cases); 
NMNL relaxes this assumption by grouping 
alternatives into nests (Liao, Molin, & van Wee, 2017). 
Both MNL and NMNL models assume homogenous 
distribution of consumer tastes (within nests, in the 
case of NMNL).  

To address this limitation, scholars and practitioners 
began using mixed logit (ML) models, allowing for 
heterogeneous consumer tastes, which became 
common in the literature beginning around 2010 (Liao, 
Molin, & van Wee, 2017). ML models estimate 
consumer utility using observed characteristics but also 
allowing for random variation unrelated to observed 
characteristics.  

Train and Winston (2007) estimate a ML consumer 
choice model with the following utility function for 
consumer n and vehicle j: 

                   𝑈𝑈𝑛𝑛𝑗𝑗 = 𝛿𝛿𝑗𝑗 + 𝛽𝛽′𝑥𝑥𝑛𝑛𝑗𝑗 + 𝜇𝜇′𝑛𝑛𝑤𝑤𝑛𝑛𝑗𝑗 + 𝜀𝜀𝑛𝑛𝑗𝑗            (2.13) 
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where 𝛿𝛿𝑗𝑗 is the average utility derived by all consumers 
from vehicle j; 𝑥𝑥𝑛𝑛𝑗𝑗 is a set of consumer characteristics 
interacted with vehicle attributes, with 𝛽𝛽′ representing 
the population-mean coefficient for each factor; and 
𝑤𝑤𝑛𝑛𝑗𝑗 is a set of vehicle attributes interacted with 
consumer characteristics for which tastes vary, with 𝜇𝜇′𝑛𝑛 
representing a vector of random terms. Finally, 𝜀𝜀𝑛𝑛𝑗𝑗 
captures all remaining elements of utility and is 
assumed to be independent and identically distributed. 
The probability of consumer n choosing vehicle i from 
the suite of j vehicle options can be calculated via mixed 
logit model: 

                   𝑃𝑃𝑛𝑛𝑗𝑗 = ∫ 𝑒𝑒𝛿𝛿𝑖𝑖+𝛽𝛽′𝑥𝑥𝑛𝑛𝑖𝑖+𝜇𝜇′𝑤𝑤𝑛𝑛𝑖𝑖

∑ 𝑒𝑒𝛿𝛿𝑗𝑗+𝛽𝛽′𝑥𝑥𝑛𝑛𝑗𝑗+𝜇𝜇′𝑤𝑤𝑛𝑛𝑗𝑗𝑗𝑗
                                 (2.14) 

EPA (2012) notes the increased complexity of a ML 
model relative to MNL and NMNL, highlighting that 
additional information and simulations are required, 
but calls the ML formulation “still quite feasible.” 

Research applications 

Consumer choice models are a popular tool for 
understanding adoption patterns for new vehicle 
technologies. We provide more detail on several 
specific model applications relevant to policy 
conversations in Chapter 3. In an example from the 
academic literature, Bandivadekar (2008) used a 
discrete choice modeling approach to estimate the 
market penetration rate of advanced LDV technologies. 
Results from four modeling scenarios estimate new 
hybrid electric vehicle (HEV) sales ranges between 15% 
and 40% by 2035. In the case of new PHEVs, sales are 
estimated to range between 0% and 15% by 2035.  

Al-Alawi and Bradley (2013) catalog a range of other 
examples of uses of consumer choice modeling for 
LDVs, both in the US and internationally. In addition to 
this list, the International Energy Agency (2022) uses a 
logit function to project future sales shares of ICE 
vehicles, hybrids, EVs, and other competing 
technologies grounded in current and future 
technology costs. 

 

Advantages and disadvantages 

An important advantage of consumer choice models is 
their ability to represent individual decision-making as 
part of a market segment. They are also less complex, 
more transparent, and easier to implement than other 
modeling constructs, such as agent-based models. 
Another advantage to consumer choice models is their 
ability to consider competing technologies in the choice 
set.  

Because choice models exploit a validated relationship 
between vehicle choice and the characteristics of the 
buyers and the vehicle attributes, they are useful for 
analyzing how major real-world factors (e.g., 
technological changes, policy) can affect the sales 
evolution of new, advanced vehicle technologies over 
time.   

A significant disadvantage of choice models is that rich 
historical data is needed to calibrate the model—
however, data for newer vehicle technologies is often 
lacking or does not exist. In these cases, practitioners 
often look to survey data or their own hypotheses to 
draw inferences on consumer preference sensitivities, 
which may be less reliable. Parameters may also be able 
to be sourced from other papers.  

These models are also sensitive to the inclusion and 
values of explanatory variables used to estimate the 
model; using faulty, incomplete, or outdated 
assumptions can yield flawed estimates. Dormeus et. al. 
(2019) compare the accuracy of a NMNL model with a 
simple forecast based on persistent market shares and 
find that the simpler model outperforms the NMNL 
because changes in vehicle price are linked to 
unobserved changes in other aspects of a vehicle’s 
quality. 

Care must also be taken not to generalize the behavior 
of early adopters to the entire market, which can be an 
inherent function of fitting the model to historical data. 
Choice models may also encounter issues with 
overfitting (Liao, Molin, & van Wee, 2017).  
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Consumer choice models also do not directly estimate 
the absolute size of a vehicle market but rather 
characterize the evolution of vehicle sales shares over 
time (Podkaminer, Xie, & Lin, 2017). 

Agent-based models 

An agent-based model (ABM) is a bottom-up, 
stochastic computer simulation model used to 
understand complex systems by capturing the actions 
and interactions between individual agents operating 
within the system to observe the emergence of coherent 
and dynamic system behaviors (Gilbert, 2019; Zhang, 
Gensler, & Garcia, 2011). Agents (i.e., individuals or 
entities) are inherently designed to have control over 
how they interact with other agents within the 
simulation environment. ABMs have proven useful for 
understanding intricate relationships and potential 
causal mechanisms driving system behavior (Gilbert, 
2019). They have been applied in many fields of study, 
including vehicle technology adoption, biology, 
epidemiology, economics, and population dynamics.  

In ABMs, agent interactions with other agents and the 
environment are based on decision rules and 
information available to each agent. Decision rules 
describe: (1) how the simulation environment acts on 
its own; (2) how agents behave on their own; (3) how 
agents interact with one another; and (4) how agents 
interact with the environment (DeAngelis & Diaz, 
2019).  Typically defined at the agent level, decision 
rules are characterized using mathematical 
equations/algorithms and describe agent actions at 
temporal scales (Stephens T. , 2010). ABM simulations 
repeatedly execute the rules that define them. Through 
this iterative process, the combined behaviors of the 
agent can be measured gradually and reinjected into the 
behavior of the same agents (Manzo & Matthews, 2014).  

ABMs have proven helpful in capturing systems of 
heterogenous agents exhibiting distinctive behaviors. 
Within the context of forecasting, their use to observe 
the penetration of new vehicle technologies has 
depicted different types of agents within the simulation 
environment (Sullivan, Salmeen, & Simon, 2009; Cui, 
Liu, Kim, Kao, & Tuttle, 2011; Eppstein, Grover, 

Marshall, & Rizzo, 2011). Although the number and type 
of agents can vary, typical agents depicted include 
consumers, automakers, fuel suppliers, and 
policymakers (Al-Alawi & Bradley, 2013). The consumer 
agents are characterized by their preferences and 
demographics and represent vehicle demand. 
Automaker agents are responsible for supplying vehicle 
technologies, with vehicles being characterized by 
vehicle class, fuel type, performance, costs, etc. Fuel 
supplier agents are responsible for providing fuel 
resources. Their actions are primarily dictated by 
consumer responses to policies (e.g., gas tax increases) 
or standards (e.g., clean fuel standards) that affect fuel 
use. Policymaker agents are responsible for 
implementing policies and standards impacting vehicle 
sales and use.  

Each agent in an ABM is described by a series of 
attributes influencing their decisions. Characterizing 
these attributes requires using relevant external data 
sources combined with modeler intuition, behind 
which values will likely bring about plausible agent 
behavior. For example, in the context of vehicle 
adoption, the attributes of a consumer agent might 
include average trip distance and travel speeds. 
Distributions for these attributes can be derived using 
National Household Travel Survey data (Stephens T. , 
2010). For the most part, the data needs and 
corresponding sources will largely depend on the 
system the ABM is simulating and its represented 
agents. Like many models, the degree of realism 
depicted in an ABM simulation depends on the quality 
of data used. Accurate, reliable data is needed for 
parameterizing agents if ABMs are to be used for policy 
analysis (An, et al., 2021).  

Research applications 

ABMs have been used in the academic literature to 
forecast market penetration of new advanced vehicle 
technologies such as HEVs, PHEVs, and EVs.  For 
example, Sullivan et al. (2009) used an ABM to evaluate 
the penetration of PHEVs into the US auto marketplace 
under various consumer, economic, and policy 
conditions. The model included four classes of agents: 
consumers, government, fuel suppliers, and 
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automakers. Their agent-based modeling study 
revealed that tax rebates, PHEV subsidies, and sales tax 
exemptions had the most impact on PHEV market 
penetration. 

In a later study, Noori and Tatari (2016) developed, 
verified, validated, and applied a four-agent ABM to 
predict future market shares of electric vehicles and 
ICEVs in the US in 2030 under different scenarios. 
Modeling results indicated that government subsidies 
play an important role in the market penetration of EVs. 
When combined with a “word-of-mouth” effect, the 
authors projected that EVs could comprise up to 30% of 
new vehicle sales, on average, in 2030. 

Advantages and disadvantages 

A significant advantage of ABMs is their flexibility 
across multiple dimensions. For example, agents can be 
easily added to or subtracted from the model. Another 
example is how easy it is to modify the relative 
complexity of modeled agents. In modeling vehicle 
purchase decisions, ABMs consider different market 
intricacies (e.g., household budget limitations) that can 
influence individual purchase decisions. Another 
important advantage is their ability to include social 
processes and other non-monetary influences on the 

decision-making of system agents, including exogenous 
shocks like sudden changes in government regulations 
or a sharp decrease in fuel supply (Sullivan, Salmeen, & 
Simon, 2009). ABMs can also represent hypothetical 
consumer behavior, depending on how its agent rules 
are designed, unlinking results from historical data 
(Noori & Tatari, 2016). 

The biggest disadvantage facing ABMs is that they can 
be quite complex. There are typically issues with 
computational efficiency, given that most ABMs are 
operated on personal computers. ABMs are also 
challenging to develop, test, parameterize, and validate. 
Simulating the dynamics of a large population (like car 
buyers in the US) may result in ABMs becoming 
“unwieldy” (Bruch & Atwell, 2015).  

Another facet of the complexity in developing ABMs is 
that each actor's behavior must be specified. 
Developers must ensure that fundamental assumptions 
of the model are consistent with basic physical and 
economic principles; expanding the model too quickly 
may result in indefensible assumptions that 
inadvertently run afoul of “real world” dynamics 
(Wallace, Geller, & Ogawa, 2015)
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CHAPTER 3 

Consumer Choice Applications in Policy-
relevant Models  

The broad categories of models discussed in the 
previous chapter each have their advantages and 
disadvantages. Some are more suitable than others for 
specific analytical tasks, depending on the overall 
research objective and scope and data availability. Many 
of the most policy-relevant models used to forecast 
sales of advanced vehicle technologies adopt a 
consumer choice modeling framework. As discussed in 
Chapter 2, consumer choice models have proven to be 
useful for analyzing how major, real-world factors (e.g., 
technology, infrastructure, consumer behavior, policy) 
can affect the sales of new vehicle technologies over 
time.  

In this chapter, we provide details on the characteristics 
and features of a subset of consumer choice models, 
homing in on those developed by federal agencies or 
federally funded research institutions. For comparison, 
we also discuss a transport sector model for the 
European Union (EU). In this chapter, we build on and 
update a comparison of vehicle choice models 
published by Argonne National Laboratory (Stephens, 
et al., 2017).  

We note the policy applications in the discussion of 
each model, but in general, the models in this chapter 
are used in regulatory settings (e.g., EPA’s OMEGA 
model, the state of California’s use of LAVE-Trans and 
ADOPT, the EC’s PRIMES-TREMOVE), in legislative 
discussions and to establish commonly cited baselines 
(e.g., NEMS), or to guide the work of federal agencies 
(e.g., MA3T).  

This is not an exhaustive review of all policy-relevant 
consumer choice models. Some models, like the Center 
for Sustainable Energy’s Caret model, have been 
influential in legislative conversations but lack publicly 
available documentation. Other models lack full-scale 
consumer choice components, like Evolved Energy 

Research’s EnergyPATHWAYS model (the energy 
system model powering Princeton University Zero 
Lab’s Rapid Energy Policy Evaluation and Analysis 
Toolkit). Still another set of models also exist in the 
academic literature that have not been applied in a 
policymaking setting. 

NEMS 

The National Energy Modeling System (NEMS) is 
developed and maintained by EIA. EIA (2022) uses 
NEMS to produce its benchmark Annual Energy 
Outlook (AEO), an assessment of the US energy system 
under current policy through 2050. The AEO is one of 
the most cited data sources for understanding the 
evolution of the US energy system. Rhodium Group and 
other organizations use their own versions of NEMS to 
produce tailored policy analyses (King, et al., 2022; 
Clemmer, 2016). NEMS is updated annually as part of 
the AEO development cycle.  

The NEMS Transportation Demand Module (TDM) 
provides projections of transportation energy demand 
via four submodules—LDV, air travel, freight transport, 
and miscellaneous energy demand. In the LDV 
submodule, the consumer vehicle choice component 
(CVCC) is used to estimate the market penetration of 
conventional and 14 alternative fuel vehicles, taking as 
its starting point projections of total new vehicle sales 
generated in a separate macroeconomic module. It uses 
a nested multinomial logit choice function to calculate 
the market shares.  

The nested tree structure of the logit has two main 
stages. The first stage determines sales shares for five 
vehicle groups: conventional (e.g., gasoline, diesel, 
etc.), hybrid, dedicated alternative fuel (e.g., dedicated 
compressed and liquified natural gas), fuel cell, and 
EVs, while the second stage determines sales shares for 
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more granular vehicle classes within each of these 
groups. A third stage estimates the proportion of travel 
in which flex or bi-fuel vehicles use alternative or 
gasoline fuel.  

The CVCC calculates vehicle utility using a set of 
vehicle attributes, including vehicle price (as modified 
by the separate Manufacturer Technology Choice 
Component in which manufacturers respond to federal 
fuel economy policy), fuel cost, vehicle range, fuel 
availability, battery replacement cost, vehicle 
performance, home refueling capability, maintenance 
costs, luggage space and make and model availability. 
The coefficients applied to these attributes in the 
NMNL formulation remain constant over time as 
applied by EIA, though the user can set the model to 
vary these coefficients over time. In addition to these 
vehicle attributes, the NMNL includes an intercept 
term representing the utility consumers assign to the 
vehicle not otherwise captured in the vehicle attributes. 
EIA updates the intercept term to align the first model 
projection year with historical sales data.  In addition to 
modeling the impact of federal fuel economy policy 
(i.e., Corporate Average Fuel Economy standards), the 
TDM can evaluate various other policies, including fuel 
taxes, vehicle subsidies, ZEV mandates, and other 
policies related to transportation energy use and GHG 
emissions. For additional information on the NEMS 
TDM, refer to EIA (2022).  

OMEGA 

The Environmental Protection Agency (EPA) has 
regulated greenhouse gas emissions from LDVs since 
model year (MY) 2012, after the Agency’s 
endangerment finding (EPA, 2010). EPA created the 
Optimization Model for Reducing Emissions of 
Greenhouse Gases from Automobiles (OMEGA) to 
estimate the benefits and costs of meeting user-
specified GHG emission targets through different 
technology packages applied to vehicles to support the 
development and promulgation of its first LDV GHG 

 
1 The Volpe model also lacks a full-scale consumer choice component. 
EPA developed a consumer choice model for the original version of 
OMEGA, but it was never used in a regulatory setting (EPA, 2012) 

standards. EPA continued use of OMEGA in its LDV 
GHG standards for MY2017 and later, as well as its 
initial final determination in its midterm evaluation for 
My2022-2025 (EPA and NHTSA, 2012; EPA, 2017). EPA 
subsequently used an alternative tool, the National 
Highway Traffic Safety Administration’s (NHTSA) 
CAFE Compliance and Effects Modeling System (also 
commonly called the Volpe model), to model the 
effects of the Safer Affordable Fuel-Efficient (SAFE) 
Vehicles Rule for MY 2021–2026 as well as its recent 
revised standards for MY 2023 and later (EPA and 
NHTSA, 2020; EPA, 2021) 

The initial version of OMEGA is an accounting model, 
not an economic simulation model that would allow 
vehicle sales to interact with changes to vehicle cost 
and performance.1 EPA has been developing a new 
version of the model, OMEGA version 2.0, to address 
this issue by including a new Consumer Module 
responsible for predicting changes in the LDV vehicle 
sales or sales shares over time given policy-induced 
changes in vehicle characteristics such as new vehicle 
price, fuel operating costs, and other important 
attributes. The final version of OMEGA v2.0 was not 
available at the time of drafting, so this review is based 
on the publicly available demonstration version. 

This new consumer module adopts a modified logit 
estimation approach based on a similar method used in 
the Global Change Analysis Model (GCAM) developed 
and maintained by the Joint Global Change Research 
Institute (JCGRI). The model estimates sales shares of 
competing vehicle technologies as a function of the 
generalized cost of the technology while accounting for 
the speed of its public acceptance. Model users define 
the different vehicle market classes for which the sales 
shares are estimated as well as two important 
parameters for each technology: a share weight, which 
calibrates sales shares to historical values and 
establishes how quickly consumers accept a new 
technology, and a price sensitivity parameter to set 
consumer responsiveness to price (Joint Global Change 
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Research Institute, n.d.). Vehicle ownership costs can 
be further informed by manufacturer decisions to 
implement new technologies in the producer module of 
OMEGA, which models how LDV manufacturers 
respond to regulatory policy by altering vehicle 
attributes. JCGRI describes as an advantage of the 
modified logit formulation of the consumer choice 
model the fact that it can take a long time for 
uncompetitive technologies to be pushed out of the 
market, which is potentially representative of an 
adoption pathway for EVs and other alternative fuel 
vehicles relative to incumbent internal combustion 
technologies. 

As discussed above, a completed version of OMEGA 
v2.0 is not publicly available at the time of this drafting. 
The current demonstration version of the model uses 
share weight and price sensitivity parameters from the 
US-specific version of GCAM, and it has a limited set of 
vehicle classes. However, GCAM itself has been used in 
a variety of settings to model the adoption of a wider 
range of vehicle technologies in the context of global 
decarbonization (Kim, Waldhoff, & Edmonds, 2022; 
Kyle & Kim, 2011) as well as in the US specifically (Wise, 
Kyle, Dooley, & Kim, 2009).  

For additional information on the OMEGA v2.0 model, 
refer to EPA (2022). 

MA3T 

Developed and managed by Oak Ridge National 
Laboratory (ORNL), the Market Acceptance of 
Advanced Automotive Technologies (MA3T) model is 
a demand-side vehicle choice model used to understand 
factors driving individual purchasing decisions in new 
vehicle technologies. The model includes 20 different 
powertrain technologies for each of five vehicle classes 
(i.e., small car, large car, small SUV, large SUV, and 
pickup). Within each of the powertrain technology 
classes, multiple variants exist to capture trade-offs 
between vehicle attributes amongst class options. 

MA3T contains a rich and detailed representation of the 
US consumer LDV market, consisting of more than 
9,000 different consumer segments based on six 

dimensions: (1) driving patterns; (2) new technology 
attitude; (3) population density; (4) US census division 
and state; (5) home charging convenience; and (6) 
workplace charging availability.  Each segment faces the 
same number of powertrain options. Therefore, the 
model can provide a detailed representation of the US 
LDV market.  

The basis of MA3T is a nested multinomial logit discrete 
choice model that endogenously predicts the purchase 
probabilities for different LDV technologies in the US 
out to the year 2050. The initial level of MA3T’s nesting 
structure is a consumer choice between a passenger car 
and a light-duty truck. In the second level of the nest, 
consumers choose between the powertrains noted 
above. Purchase probabilities for each vehicle option 
and a given consumer segment depend on a series of 
value components, including vehicle attributes, driver 
behavior, infrastructure, and policies. Purchase 
probabilities for each segment are used to derive 
market penetration rates, vehicle sales patterns, vehicle 
population, fuel consumption, and annual life-cycle 
greenhouse gas (GHG) emissions. Other outputs 
produced by the model are annual government 
expenditures on vehicle subsidies and consumer 
surplus.  

MA3T can be used to evaluate various policies such as 
tax credits, feebates, CAFE standards, carbon taxes, a 
low carbon fuel standard (LCFS), renewable fuel 
standards (RFS), and time of use (TOU) rates. Policy-
relevant published work that uses MA3T includes an 
analysis of the impacts of Department of Energy 
hydrogen technology research targets and a novel 
regulatory pathway considered under the Renewable 
Fuels Standard (Lin, Dong, & Greene, Hydrogen 
vehicles: Impacts of DOE technical targets on market 
acceptance and societal benefits, 2013; Podkaminer, 
Xie, & Lin, 2017).  

MA3T is continuously updated and recalibrated as more 
is learned about consumer preferences and advanced 
vehicle technologies. The most recent update to the 
model occurred in 2021. For additional information on 
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the MA3T model, refer to Lin (2021); Lin, Dong, and 
Greene (2013); and Lin & Greene (2010). 

LAVE-Trans 

The Light-duty Alternative Vehicle Energy 
Transitions (LAVE-Trans) model was originally 
developed by ORNL and used in the National Research 
Council (NRC) 2013 study, Transitions to Alternative 
Vehicles and Fuels. Like MA3T, the LAVE-Trans model 
tracks the evolution of vehicle fleet efficiency and fuel 
use out to 2050, which includes the potential for 
increasing numbers of non-incumbent vehicle 
technologies to enter the fleet mix over time.  The 
model represents major economic barriers that can 
impede this transition, including technological 
limitations, issues with scaling, and consumer risk 
aversion. Each barrier can be viewed as either a 
transition cost or an external benefit derived from 
adopting the new vehicle technology. LAVE-Trans 
incorporates each of these barriers, allowing for the 
quantification of the costs associated with overcoming 
these barriers, as well as the external benefits of policies 
used to overcome them. 

The core of LAVE-Trans is a representative consumer 
choice model that uses a nested multinomial logit 
approach to estimate consumer purchase probabilities 
and derive vehicle market shares. In contrast to other 
NMNL approaches discussed previously, the first 
LAVE-Trans nest is whether the consumer opts to buy 
a vehicle; subsequent nests provide an increasingly 
granular representation of vehicle types and fuels. Nine 
variables determine market shares: (1) retail price 
equivalent; (2) energy cost per kilometer; (3) range; (4) 
annual maintenance cost; (5) fuel flexibility; (6) range 
limitation for BEVs; (7) availability of public charging 
infrastructure; (8) risk aversion (innovator vs. 
majority); and (9) diversity of make and model options 
available.  

The model forecasts sales shares for two LDV classes 
(i.e., cars and light trucks) and six different powertrain 
choices, including conventional ICE, BEV, HEV, two 
PHEV classes, and fuel cell vehicles (FCV). The model 
captures the heterogeneity of consumers’ preferences 

based on the inclusion of two consumer segments:  
early adopters and majority adopters. Early adopters 
are more risk-taking and will adopt new advanced 
vehicle technologies with less hesitation, whereas 
majority adopters are risk averse and will only come 
into the market as more of these new vehicle 
technologies are sold.  

LAVE-Trans can model scenarios reflecting various 
policy options with the potential to affect consumer 
choices, including new vehicle rebate programs, 
mandates, incentives for fuel or charging infrastructure 
development, and fuel taxes. LAVE-Trans was used to 
study the market adoption of electric drive vehicles in 
response to a national embracing of California’s Zero 
Emission Vehicle (ZEV) mandates, and LAVE-Trans 
modeling has played important roles in informing 
California Energy Commission (CEC) research 
(Greene, Park, & Lin, 2013; California Energy 
Commission, 2015). 

For additional information on the LAVE-Trans model, 
refer to NRC (2013). 

ADOPT 

Developed by the National Renewable Energy 
Laboratory (NREL), the Automotive Deployment 
Options Projection Tool (ADOPT) is a vehicle 
consumer choice and stock model used to estimate the 
impacts of changes in vehicle technology cost and 
performance (e.g., cheaper EV batteries, vehicle light-
weighting) on US LDV sales, energy use, and GHG 
emissions.  

The vehicle market in ADOPT reflects LDV options as 
they exist today, from which future LDV options evolve 
endogenously by optimizing vehicle attributes for 
consumer preferences. Baseline model simulations 
begin with all existing vehicle makes, models, and trim 
levels available on the market, providing a realistic view 
of the market and an accurate starting point for vehicle 
attributes. ADOPT then estimates future vehicle sales 
by applying exogenous technology improvements and 
corresponding changes in vehicle attributes over time. 
This new set of options then flows into the consumer 
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choice component of the model. A unique feature of 
ADOPT is that it is spatially explicit and can forecast 
vehicle sales at the zip code level.  

Unlike many other vehicle choice models covered in 
this chapter, ADOPT does not use a standard MNL 
model to predict consumer choice but instead uses a 
ML model to estimate vehicle sales, applying a 
distribution of weighting coefficients via a sales 
distribution factor to key vehicle attributes, including 
price, fuel cost per mile, acceleration, fuel availability, 
vehicle size, and range. As discussed above, using a 
mixed logit model allows for increased representation 
of consumer preference heterogeneity. Historical data 
has revealed that attitudes about vehicle attributes are 
a function of income. ADOPT captures consumer 
preference variation by income with perceptions of 
vehicle attributes having a nonlinear relationship with 
changes in income.  

ADOPT can be used to evaluate alternative policies, 
regulations, and mandates such as CAFE standards, 
ZEV mandates, tax credits, and vehicle subsidies. 
ADOPT was used in NREL’s landmark Electrification 
Futures Study to project electric vehicle growth (Jadun, 
et al., 2017). It has also been used in a variety of CEC 
research settings, including recent updates to the 
statutorily mandated Integrated Energy Policy Report 
as well as to understand important tradeoffs in energy 
transition policy design (Ledna, Brooker, & Lee, 2022; 
Ledna, Muratori, Brooker, Wood, & Greene, 2022). The 
California Air Resources Board also incorporated the 
CEC’s ZEV forecasting framework (using ADOPT) into 
its Emission FACtor (EMFAC) tool (California Air 
Resources Board, 2021). 

ADOPT has been updated several times since its initial 
release, and the latest version of the model was publicly 
released in January 2020. For additional information on 
the ADOPT model, refer to Brooker et al. (2015). 

PRIMES-TREMOVE 

Price-Induced Market Equilibrium System (PRIMES) is 
a European-focused energy system model originally 
developed by the National Technical University of 
Athens and maintained by its E3MLab and E3-
Modelling. PRIMES-TREMOVE, the transportation 
component of the model, solves for the partial market 
equilibrium between the demand and supply of 
transport services and projects the evolution of 
passenger and freight transport demand by transport 
mode and vehicle type (split by powertrain and fuels). 
The model covers all European countries and makes 
projections until 2070 in 5-year time steps. 

The model represents consumer choice of technology 
and fuel type for new vehicles using a discrete choice 
model with a nested Weibull formulation—another 
functional form discussed in the discrete choice 
literature. PRIMES-TREMOVE develops a unit cost 
index, expressed in €/vehicle-km, that includes costs of 
purchasing and operating a vehicle as well as hidden 
costs such as range anxiety dependent on car 
performance and availability of refueling/recharging 
infrastructure. The model also accounts for elasticity of 
substitution among alternatives and weights these 
costs by indexes that reflect product maturity and 
consumer acceptance. As with NMNL, the model 
calculates sales shares on a nested basis, first between 
ICE, battery-based electric cars, and fuel cell cars and 
subsequently into more disaggregated technologies.  

PRIMES-TREMOVE can model a wide range of policy 
measures, including EU taxation directives, the EU 
Emissions Trading System, and regulatory policies. The 
model has been applied in various European policy 
modeling contexts, including EC LDV GHG regulations 
and the EU 2050 long-term decarbonization strategy  
(European Commission, 2017; European Commission, 
2022). 

For additional information on the PRIMES-TREMOVE 
model, refer to E3 Modelling (2018; Siskos, Capros, & 
De Vita, 2015).
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CHAPTER 4 

Conclusion

Our literature review of LDV market forecasting 
models revealed that market diffusion models, 
consumer choice models, and agent-based models are 
common choices to project future vehicle sales. Each 
model has strengths and weaknesses that can make it 
more suitable for specific types of analysis.  

Diffusion models are relatively straightforward to 
estimate but are limited to adoption of a single 
technology without competitors. They require 
exogenous specification of both the total available 
market share and the timeframe by which that market 
share is reached. As such, diffusion models are best 
used to understand the initial adoption of new-to-
market technologies.  

Once historical data or other consumer preference data 
is available, analysts can employ approaches like 
consumer choice and agent-based models, which can 
more richly represent consumer behavior in 
competitive markets. Consumer choice models are the 
most commonly used in the LDV adoption literature 
among all three model types we examined, often using 
a logit formulation as their basis. Consumer choice 
models are also easy to estimate and allow for 
competition between alternatives, but they can be 
sensitive to both the inclusion and values of 
explanatory variables used for their estimation. These 
choice models can represent a good compromise 
between the ease of estimation in diffusion models and 
the flexibility of ABMs, which is likely a reason they’re 
so prolific. 

While diffusion and consumer choice models can 
characterize individuals as part of broader markets, 
ABMs are “bottom-up” models representing individual 
agents’ behavior. ABMs can include social processes 
and other non-monetary influences on adoption 
decisions. But the richness of ABMs comes at a cost: 
they are generally more difficult to design and estimate 

and can require a great deal of computational capacity. 
As the size of the market being estimated by the ABM 
grows, so too does the complexity and solve time—
which can put ABMs out of reach for estimation of 
national-scale projections. 

Promising work has merged several types of adoption 
models to benefit from their strengths. Struben and 
Sterman (2008) merged diffusion modeling with 
consumer choice modeling to estimate market 
adoption of alternative-fueled vehicles, while Cui et. al. 
(2011) use a consumer choice model as part of an agent-
based modeling framework. Recently, Kinter-Meyer et. 
al. (2022) estimated distribution circuit-level adoption 
of EVs using a Bass diffusion approach followed by 
household-level adoption via a MNL model.  

We found that government-funded models have widely 
adopted consumer choice techniques to understand 
how policies, regulations, and incentives can influence 
market adoption patterns of new LDV technologies—
particularly in cases where competing technologies 
exist.  These models vary in computational power, how 
they characterize the LDV market, and the types of 
vehicle attributes and demographic characteristics that 
drive projections of consumer preferences.  

Because all the models we reviewed have strengths and 
weaknesses, policymakers need to be aware of the 
inherent limitations of the models they rely on to assess 
policy design and tradeoffs. The US and the world are 
still in the early stages of a transition to lower-emitting 
transportation technologies. The coming years will 
yield new data and insights as analysts observe how 
technology adoption trends come to pass in reality. 
These data and insights will improve researchers’ 
ability to provide more accurate forecasts in the future. 
In addition, advances in computing capacity and 
academic achievement in model development are likely 
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to yield improvements to today’s suite of modeling 
options and new modeling approaches. 

In the meantime, these models can provide useful, if 
imprecise, information as policymakers seek to advance 
this low-carbon transition. 
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